Download The End of Error: Unum Computing by John L. Gustafson PDF

By John L. Gustafson

The way forward for Numerical Computing

Written via one of many most advantageous specialists in high-performance computing and the inventor of Gustafson’s legislations, The finish of errors: Unum Computing explains a brand new method of machine mathematics: the common quantity (unum). The unum encompasses all IEEE floating-point codecs in addition to fixed-point and detailed integer mathematics. This new quantity sort obtains extra actual solutions than floating-point mathematics but makes use of fewer bits in lots of circumstances, saving reminiscence, bandwidth, strength, and power.

A whole Revamp of computing device mathematics from the floor Up

Richly illustrated in colour, this groundbreaking e-book represents a basic switch in the way to practice calculations instantly. It illustrates how this novel technique can clear up difficulties that experience vexed engineers and scientists for many years, together with difficulties which were traditionally restricted to serial processing.

Suitable for someone utilizing pcs for Calculations

The publication is on the market to somebody who makes use of desktops for technical calculations, with a lot of the e-book in basic terms requiring highschool math. the writer makes the math attention-grabbing via quite a few analogies. He sincerely defines jargon and makes use of color-coded bins for mathematical formulation, computing device code, vital descriptions, and exercises.

Show description

Read or Download The End of Error: Unum Computing PDF

Similar machine theory books

Numerical computing with IEEE floating point arithmetic: including one theorem, one rule of thumb, and one hundred and one exercises

Are you accustomed to the IEEE floating element mathematics common? do you want to appreciate it larger? This booklet provides a extensive evaluate of numerical computing, in a ancient context, with a different concentrate on the IEEE usual for binary floating element mathematics. Key principles are constructed step-by-step, taking the reader from floating aspect illustration, safely rounded mathematics, and the IEEE philosophy on exceptions, to an knowing of the the most important strategies of conditioning and balance, defined in an easy but rigorous context.

Robustness in Statistical Pattern Recognition

This booklet is anxious with very important difficulties of sturdy (stable) statistical pat­ tern reputation whilst hypothetical version assumptions approximately experimental info are violated (disturbed). development attractiveness conception is the sector of utilized arithmetic during which prin­ ciples and techniques are built for category and id of items, phenomena, strategies, occasions, and signs, i.

Bridging Constraint Satisfaction and Boolean Satisfiability

This ebook presents an important step in the direction of bridging the parts of Boolean satisfiability and constraint delight through answering the query why SAT-solvers are effective on yes sessions of CSP cases that are not easy to resolve for normal constraint solvers. the writer additionally offers theoretical purposes for selecting a selected SAT encoding for a number of vital sessions of CSP circumstances.

A primer on pseudorandom generators

A clean examine the query of randomness was once taken within the idea of computing: A distribution is pseudorandom if it can't be distinctive from the uniform distribution via any effective strategy. This paradigm, initially associating effective tactics with polynomial-time algorithms, has been utilized with admire to quite a few traditional periods of distinguishing tactics.

Additional info for The End of Error: Unum Computing

Example text

And how should both positive and negative values for the scale factor be stored, since there are many ways to represent negative numbers? Does the scale have to represent a power of two, or could it be a power of a different base, like 16? Should there be a way to represent infinity? 18 | The End of Error With so many choices, it is no surprise that every computer company came up with a different float format in the early days of electronic computing. If you had data archives containing floats, they would only make sense on a particular computer brand.

0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • x • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 11 11 16 =+ 0 00 15 =- 1 11 =0 01 00000 = -15 • • • • • • • • • • 00 x – – – – – – – – – – – – – – 1 11 11 16 =+ 1 11 =0 01 0 00 15 =- 00 = -15 Division, x ∏ y +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ +++++++++++++ ++++++++++++ +++++++++++ ++++++++ – – – – – – 1 11 11 16 =+ 1 11 =0 0 00 15 =- Multiplication, x ¥ y 11111 – – – – – – – – – – – – – – – –––––––––––––– = +16 – – – – – – – – – – – – – – x 01 00000 = -15 – – – – – – – – – – – – – 00 1 11 =0 0 00 15 =- 1 11 11 16 =+ x 01 00 = -15 – – – – – – – – – – – – – Subtraction, x – y ++++++++++++++++ +++++++++++++++ ++++++++++++++ +++++++++++++ ++++++++++++ +++++++++++ ++++++++++ +++++++++ ++++++++ +++++++ ++++++ +++++ ++++ +++ ++ + This is an improvement.

0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • x • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 11 11 16 =+ 0 00 15 =- 1 11 =0 01 00000 = -15 • • • • • • • • • • 00 x – – – – – – – – – – – – – – 1 11 11 16 =+ 1 11 =0 01 0 00 15 =- 00 = -15 Division, x ∏ y +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ +++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ +++++++++++++ ++++++++++++ +++++++++++ ++++++++ – – – – – – 1 11 11 16 =+ 1 11 =0 0 00 15 =- Multiplication, x ¥ y 11111 – – – – – – – – – – – – – – – –––––––––––––– = +16 – – – – – – – – – – – – – – x 01 00000 = -15 – – – – – – – – – – – – – 00 1 11 =0 0 00 15 =- 1 11 11 16 =+ x 01 00 = -15 – – – – – – – – – – – – – Subtraction, x – y ++++++++++++++++ +++++++++++++++ ++++++++++++++ +++++++++++++ ++++++++++++ +++++++++++ ++++++++++ +++++++++ ++++++++ +++++++ ++++++ +++++ ++++ +++ ++ + This is an improvement.

Download PDF sample

Rated 4.99 of 5 – based on 17 votes